Mariela Edith Arboit, E. Betman


The study proposes determining the potential of solar collection in urban environments, considering urban building different morphological variables corresponding to representative urban settings in the Mendoza Metropolitan Area (AMM), Argentina.

The methodology involves monitoring the global solar irradiance on the vertical plane in North facades, completely sunny and partly sunny, affected by solid masking and masking woodland.

Results obtained so far indicate that solar masking is critical for vertical surfaces, with a reduction of the available solar energy between 2% and 66% in the winter season, depending on the type of trees and the building morphology. In the summer season, the measured solar masking values range from a maximum of 83% and a minimum of 10% influence of surface shaded by the neighboring buildings and trees. The results demonstrate the impact of the main variables that determine access to the sun in an urban environment (Urban Tree Canopy, Building Morphology, Building Height, Urban Street Width)

The study will allow for future reform and progressive updating of urban and building codes to implement higher levels of energy efficiency for and minimum environmental impact by urban buildings, considering the principal urban building variables.


sustainable urban development; urban morphology; solar potential; forested urban environments


Givoni, B. 1998. Climate considerations in building and urban design. John Wiley & Sons, Inc., USA.

Breheny, M. 1996. Centrist, Decentrists and Compromisers in The Compact City. E & FN Spon, London.

Oke, T. R. 1987. Boundary Layer Climates, chapter 8, pages 262–303. Routledge, 2nd edition.

Moreno García, M.C. 1993. Estudio del clima urbano de Barcelona: la isla de calor. Oikos-tau, Vilassar de Mar.

Bernatzky, A. 1982. The contribution of trees and green spaces to a town climate. Energy Build.

Rowntree, R.A., 1986. Ecology of the urban forest - Introduction to Part II. Urban. Ecology, 9: 229-243.

McPherson E. G., Simpson J. R. and Livingston M. 1989. Effect of three landscape treatments on residential energy and water use in Tucson, AZ. Energy Build. 13, 127 138.

McPherson, E. G. 1992. Accounting for benefits and cost of urban greenspace. Landscape and Urban Planning.

McPherson, E. G., Simpson, J. R., Xiao, Q. F. and Wu, C. X. 2011. Million Trees Los Angeles canopy cover and benefit assessment. Landscape and Urban Planning 99, 1, 40–50.

McPherson, E.G.; J.R. Simpson. 1998. Simulation of tree shade impacts on residential energy use for space conditioning in Sacramento. Atmospheric Environmental: Urban Atmospheres. 32, 1, 69-74.

Scudo G., J. M. Ochoa de la Torre. 2003. Spazi verdi urbani, la vegetazione come strumento di progetto per il comfort ambientale negli spazi abitati. NAPOLI: Esselibri

Santamouris M, Synnefa A, Karlessi T. 2011. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. SolarEnergy. Volume 85, Issue 12.

Santamouris M, Papanikolaou N, Livada I, Koronakis I, Georgakis C, Argiriou A, Assimakopoulos D.N. 2001, On the impact of urban climate on the energy

consumption of buildings. Solar Energy. Volume 70, Issue 3, Pages 201–216

Santamouris, M. 2000. Energy and Climate in the Urban Built Environment. James and Jamnes. London.

Santamouris, M., Papanikolaou, N., Livada, I., Koronakis, I., Georgakis, C., Argiriou,A., Assimakopoulos, D.N., 2001. On the impact of urban climate on the energy consumption of buildings. Solar Energy 70, 201–216.

Mascaró, L. 1996. Ambiencia urbana. European Comisión, Directorate-General XVII, Energiy. Faculdade de Arquitetura UFRGS. Sagra D.C. Luzzato Editores, Porto Alegre.

Akbari, H., Konopacki, S., 2005. Calculating energy-saving potentials of heat-island reduction strategies. Energy Policy 33, 721–756.

Block, A.H., Livesley, S.J., Williams, N.S.G., 2012. Responding to the Urban HeatIsland: A Review of the Potential of Green Infrastructure. Victorian Centre forClimate Change Adaptation Research Melbourne.

Simpson, J.R., 2002. Improved estimates of tree-shade effects on residential energyuse. Energy Build. 34, 1067–1076.

Tooke, T.R., Coops, N.C., Christen, A., Gurtuna, O., Prévot, A., 2012. Integrated irradiance modelling in the urban environment based on remotely sensed data. Solar Energy 86, 2923 2934.

Tooke, T.R., Coops, N.C., Goodwin, N.R., Voogt, J.A., 2009. Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sens. Environ. 113, 398–407.

Tooke, T.R., Coops, N.C., Voogt, J.A., Meitner, M.J., 2011. Tree structure influences on roof top-received solar radiation. Landsc. Urban Plann. 102, 73–81.

Armson, D., Stringer, P., Ennos, A.R., 2012. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forest. Urban Greening 11, 245–255.

Hamada, S., Ohta, T., 2010. Seasonal variations in the cooling effect of urban greenareas on surrounding urban areas. Urban Forest. Urban Greening 9, 15–24.

Loughner, C.P., 2012. Roles of urban tree canopy and buildings in urban heat island effects: parameterization and preliminary results. J. Appl. Meteorol. Climatol.51, 1775–1793.

Morakinyo, T.E., Balogun, A.A., Adegun, O.B., 2013. Comparing the effect of trees onthermal conditions of two typical urban buildings. Urban Clim. 3, 76–93.

Shashua-Bar, L., Hoffman, M.E., 2000. Vegetation as a climatic component in thedesign of an urban street: an empirical model for predicting the cooling effectof urban green areas with trees. Energy Build. 31, 221–235.

Shashua-Bar, L., Pearlmutter, D., Erell, E., 2009. The cooling efficiency of urban landscape strategies in a hot dry climate. Landsc. Urban Plann. 92, 179–186.

Gómez-Muñoz, V.M., Porta-Gándara, M.A., Fernández, J.L., 2010. Effect of tree shades in urban planning in hot-arid climatic regions. Landsc. Urban Plann. 94,149–157.

Heisler. 1986. Effects of individual trees on the solar radiation climate of small buildings. Urban Ecology Volume 9, Issues 3–4, 337-359. Special Issue Ecology of the Urban Forest II.

Parker J. H. 1983. The effectiveness of vegetation on residential cooling. Passive Solar a. 2, 123-132.

Papadakis, G., Tsamis, P., & Kyritsis, S. 2001. An experimental investigation of the effect of shading with plants for solar control of buildings. Energy and Buildings, 33, 831–836.

Wang M, Chang H-Ch, Merrick J, Amati M. 2016. Assessment of solar radiation reduction from urban forests on buildings along highway corridors in Sydney. Urban Forestry & Urban Greening 15, 225–235.

de Rosa C, et. al. 1988. Low-cost Passive Solar Homes built in a Tempered Arid Climate. Thermal and Economic Evaluation. Proceedings of the 6th. International PLEA Conference, pp. 795-802. Porto, Portugal.

Córica L., Patini A. y de Rosa C. 2004. Potencial de iluminación natural de espacios habitables en función de la morfología urbana circundante, para climas soleados. Avances en Energías Renovables y Medio Ambiente, Salta, Argentina.

Fernández, J., Basso M., Córica L., de Rosa C. C. 2003. Consecuencias energéticas de las nuevas reformas al código de edificación de la ciudad de Mendoza. Avances en Energías Renovables y Medio Ambiente. Vol. 7 Salta, Argentina.

Mesa, A.; Arboit, M.; de Rosa, C. 2010. Solar obstruction assessment model for densely forested urban environments. Architectural Science Review. Earthscan. Vol. 53 n. 2 p.224-237 ISSN 0003-8628. Sydney, Australia.

Basso, M., Fernández, J.C., Mesa, N., Córica, M. L y De Rosa C. 2003. Urban morphology and solar potential of the built environment in Andean Cities of Hispanic Layout. Assessing proposals towards a more sustainable energy future. 20th Conference on Passive and Low Energy Architecture, PLEA. Santiago – Chile.

Arboit, M. 2013. Permeabilidad del arbolado urbano a la radiación solar: Estudio de dos especies representativas en entornos urbanos de baja densidad del Ãrea Metropolitana de Mendoza, Argentina. Revista Hábitat Sustentable. Vol. 3, N2, 3-18. Chile.

Arboit, M.; Mesa, A Diblasi, A.; Fernandez Llano, J. C. y de Rosa, C. 2010. Assessing the solar potential of low density urban environments in andean cities with desert climates - The case of the city of Mendoza, in Argentina. 2nd. Part. Renewable Energy. Elsevier Editorial System. Vol. 35 p.1551-1558 ISSN 0960-1481. UK.

Arboit, M.; Diblasi, A.; Fernández Llano, J. C. and de Rosa, C. 2008. Assessing the solar potential of low density urban environments in andean cities with desert climates - The case of the city of Mendoza, in Argentina". Renewable Energy. Elsevier Editorial System. Vol. 33 Tomo 8, p.1733-1748. ISSN: 0960-1481. Renewable Energy. Oxford UK.

Canton, M.A., Mesa, A., Cortegoso, J.L. y de Rosa, C. (2003). Assessing the solar resource in forested urban environments: results from the use of a photographic-computational method. Architectural Science Review, 46, 2, pp. 115-123.

Full Text: Arboit, Betman - Paper

DOI: 10.21625/essd.v1i1.16

DOI (Arboit, Betman - Paper):


Copyright (c) 2016 International Journal of Environmental Science & Sustainable Development.